Виды солнечных батарей: сравнительный обзор

Виды солнечных батарей: сравнительный обзор.

Источник: http://sovet-ingenera.com/eco-energy/sun/vidy-solnechnyx-batarej.html

Альтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, растет их КПД. При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца необходимо предварительно разобраться в отличиях оборудования, ведь для различных климатических зон используются разные типы солнечных панелей.

Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода. Именно кремниевые пластины составляют основу себестоимости солнечных панелей, но при их использовании в качестве круглосуточного источника электроэнергии придется дополнительно купить дорогостоящие аккумуляторные батареи Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения. Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.

КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели. Ежегодно максимальные КПД различных солнечных панелей изменяются в большую сторону, потому что в исследования новых фотогальванических материалов вкладываются миллиарды долларов. Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов. Принцип их работы при этом не изменяется. Классифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя. Различают такие виды батарей по типу устройства: гибкие; жесткие. Гибкие тонкопленочные солнечные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами. Реальные характеристики солнечных панелей обычно ниже, чем указанные в инструкции. Поэтому перед их установкой дома желательно самому увидеть похожий реализованный проект По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности: Кремниевые: монокристаллические; поликристаллические; аморфные. Теллурий-кадмиевые. На основе селенида индия- меди-галлия. Полимерные. Органические. На основе арсенида галлия. Комбинированные и многослойные. Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида. Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения.

Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25 °C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%. Далее будут подробно рассмотрены солнечные панели, которые представляют наибольший потребительский интерес. Характеристики панелей на основе кремния Кремний для солнечных батарей изготавливают из кварцевого порошка — размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны. Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно. Монокристаллические кремниевые панели Современные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД. Большие монокристаллические солнечные панели с поворотными механизмами идеально вписываются в пустынные пейзажи. Там обеспечиваются условия для максимальной производительности Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины. Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам.

Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата. К преимуществам монокристаллических кремниевых батарей относят: Высокий КПД со значением 17-25%. Меньшая площадь размещения оборудования из расчета на единицу мощности, в сравнении с поликристаллическими кремниевыми панелями. Достаточная эффективность генерации электроэнергии обеспечивается до 25 лет. Недостатков у таких батарей всего два: Высокая стоимость и длительная окупаемость. Чувствительность к загрязнению. Пыль рассеивает свет, поэтому у покрытых ею солнечных панелей резко снижается КПД. Из-за потребности в прямых солнечных лучах монокристаллические солнечные панели устанавливаются в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов.

Поликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов. Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны. Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы. На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму. Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий. Днем при легкой облачности преимуществ солнечных панелей из аморфного кремния заметно не будет, их достоинства раскрываются только при плотных тучах или в тени.

К достоинствам солнечных батарей с разнонаправленными кристаллами относят: Высокая эффективность в условиях рассеянного света. Возможность стационарного закрепления на крышах зданий. Меньшая стоимость по сравнению с монокристаллическими панелями. Падение эффективности через 20 лет эксплуатации составляет всего 15-20%. Недостатки у поликристаллических панелей также имеются: Пониженный КПД со значением 12-18%. Требуется больше пространства для установки из расчета на единицу мощности в сравнении с монокристаллическими аналогами. Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов. Солнечные панели из аморфного кремния Механизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку. В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются. Фотоэлементы из осажденного аморфного кремния можно закреплять как на гибкой полимерной подложке, так и на жестком стеклянном листе На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%. Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие. За счет особенностей данной производственной технологии создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже. Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями. Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия. При одинаковой стоимости оборудования солнечные панели из гидрида кремния показывают большую производительность, чем их моно- и поликристаллические аналоги.

Подытоживая, можно указать такие преимущества аморфных солнечных панелей: Возможность изготовления гибких и тонких панелей. Высокий КПД при рассеянном свете. Установка батарей на любые архитектурные формы. Стабильная работа при высоких температурах. Простота и надежность конструкции. Такие панели практически не ломаются. Меньшее падение производительности при запыленности поверхности, чем у кристаллических аналогов Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности.

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам. Солнечные панели из редких металлов.

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей. Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования. Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS). Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно. КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление. Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику. В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.  Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий. Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм. При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей. Остро стоит вопрос срока деградации органического рабочего слоя.

Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным. Преимуществами органических солнечных панелей являются: возможность экологически безопасной утилизации; дешевизна производства; гибкая конструкция. К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин. Какую солнечную панель выбрать? Выбор солнечных панелей для загородных домов на широте 45-60 ° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели. При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи. Ориентироваться на прогнозы аналитических компаний развития рынка солнечных панелей не стоит, ведь лучшие их образцы, возможно, ещё не изобретены.

Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало. Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть.

Для населения и небольших промышленных объектов реальной альтернативы кристаллическим кремниевым панелям пока что нет. Но темпы разработки новых типов солнечных батарей позволяют надеяться, что в ближайшие десятилетия энергия солнца станет главным источником электроэнергии во многих загородных домах и дачах.

Беседы и суждения. Вып. 29. Немного об изменении климата

Семён Резниченко.

Беседы и суждения. Вып. 29. Немного об изменении климата.

Изменение климата.

Очень может быть, что антропогенное воздействие ведёт к глобальному потеплению, а регулярные циклические процессы — к похолоданию. Есть длительные глобальные тенденции к изменению климата, зависящие от наклона земной оси. Есть более короткие регулярные циклы потеплений и похолоданий. Всё это в совокупности делает климат неустойчивым, по человеческим меркам – достаточно надолго. Это будут способствовать выживанию всего устойчивого к колебаниям и изменчивости, и тех, кто сможет максимально изолироваться от колебаний.

Из-за компактности и разнообразия климатических зон, колебания климата больше воздействуют на Новый Свет, чем на Старый.

Колебания климата и природные катастрофы будут иметь всё большее влияние на социальные процессы.

 Сельское хозяйство в условиях климатической нестабильности.

О климатическом непостоянстве и нестабильности я уже писал. В условиях участившихся колебаний климата сельхозпроизводители должны всегда иметь максимально точных прогноз погоды на ближайшую перспективу, сопоставляться для этого несколько прогнозов с разным территориальным охватом. Они могут пользоваться максимально выносливым, неприхотливым посадочным материалом, либо иметь запас посадочного материала, характерного для более холодных, влажных и засушливых регионов. Иметь в запасе посадочный материал культур, подходящих для позднего пересева. Последние варианты доступны в основном для крупных агрофирм, пользующихся землями в разных климатических зонах, имеющих значительные финансовые ресурсы. Для малых хозяйств в таких условиях гораздо более эффективно тепличное, чем зерновое хозяйство. В целом в условиях климатической нестабильности на местах необходимы развитые центры по разработке и производству посадочного материала.

Здоровье и климат.
Гиппократ бы прав, что климат влияет на здоровье людей, на разных людей разный климат влияет по-разному. Неустойчивый климат вреден всем.

Колебания  климата могут вредить иммунной системе, способствовать распространению инфекционных болезней.

Крайняя неустойчивость климата может поставить перед некоторыми коллективами людей вопрос об изолированных от окружающей среды формах существования, сходных с таковыми  на космических и полярных станциях.

При нестабильном  климате большую ценность могут приобрести хорошо изолированные от внешних воздействий компактные производственно-жилые комплексы. Которые можно будет быстро перемещать на большие расстояния, например, с помощью экраноплана.

Климатические изменения, иммунитет и болезни

Климатические изменения могут вредить иммунной системе, способствовать распространению инфекционных болезней.

Торговля при неофеодализме

Торговля при неофеодализме.

Сектор торговли при неофеодализме может изрядно ужаться. Хозяйственная деятельность будет в минималистична в плане посредников и сопутствующих элементов.

Беседы и суждения. Вып. 28. Немного о промышленности

Семён Резниченко.

Беседы и суждения. Вып. 28. Немного о промышленности.

Энергетика

В плане добычи электроэнергии происходит переход на использование энергии ветра и солнца и некоторые другие альтернативные виды. Такие технологии станут максимально дешевыми и эффективными. Причём солнечная энергетика предполагает большую автономность малых групп людей, а ветряная – большей кооперации. Транспорт переходит на зарядку от этих источников энергии.

На раннем этапе развития неофеодализма большую роль могут сыграть архаичные и дешевые технологии эпохи модерна (прокатные станы, различные металлообрабатывающие станки, изготавливающие из доступных материалов простые в эксплуатации детали и изделия).

 

Производство

В промышленности окончательно воцаряется 3D – принтер. 3D – принтеры печатаются на других 3D – принтерах. Они усовершенствуются для использованная гораздо большего спектра сырья, а не только термопластиков и производных от них материалов. Особенно для максимально полного вторичного использования различных видов пластика и дешевых видов минерального сырья (известняк, цемент, бетон), а так же расширения перечня имитаторов, могущих заменять самые разные виды металлов.

С помощью таких технологий в небольших цехах при сравнительно малых энергозатратах и расходе сырья можно собирать сложные и крупные механизмы, для которых сейчас требуются большие фабрики и заводы. Например, те же экранопланы.

 

Изменения в сырьевой базе.

Основным источником сырья при неофеодализме могут стать свалки больших городов и промышленных объектов. Они могут стать основными источниками пластика и металлов. Тем более, что рудные месторождения либо истощены, либо трудны для разработки. Особенно это касается цветных металлов.

 

Научные монастыри.

 

Их появление предполагает фанатичную страсть некоторых учёных к своему предмету исследования. А также — уже наработанные достижения в сфере техники, которые помогают заменить множество людей и ресурсов, экономить средства.

 

Именно они могут сделать научные центры автономными и в значительной степени самодостаточными по отношению к обществу как таковому. Особенно, если в них удастся собрать людей, наиболее талантливые из которых будут равнодушны ко всему, кроме науки.

 

Современные компьютерные системы могут экономить массу энергии и усилий со стороны учёных, заменить значительную часть персонала исследовательских лабораторий. Они обеспечивают небывало лёгкий и быстрый доступ к информации и её обработку. Квантовые компьютеры обещают ещё более развить этот процесс.

 

Современные технологии 3D – печати, развитая робототехника, выращивание высокоурожайных съедобных растений в закрытых помещениях могут сделать комплексный научный центр независимым от поставщиков промышленных изделий и продовольствия. Он может сам производить большинство из необходимого для своего функционирования.

 

Сырьё и некоторые виды услуг, финансовые средства научный центр может получать в обмен на прикладные разработки от государства либо других заинтересованных организаций.

 

Не помешало бы освоение изготовление деталей ко многим промышленным изделиям дома на 3D- принтере.

 

Что будет представлять из себя искусство будущего?

Что будет представлять из себя искусство будущего, определить крайне сложно. В рамках рационально просчитываемых тенденций будет, как и всегда появляться неповторимое и внерациональное.

Беседы и суждения. Вып. 27. Строительство и дом

Семён Резниченко.

Беседы и суждения. Вып. 27. Строительство и дом.

Строительное дело при неофеодализме.

При неофеодализме усилится популярность быстровозводимых построек. С одной стороны, это здания возведённые по новейшим 3D- технологиям.

«Как известно, главное отличие 3D-принтера от любого другого промышленного робота в способе создания продукции. В частности, строительный 3D-принтер имеет сопло или экструдер и выдавливает из него быстротвердеющую рабочую смесь. Поверхность, на которой создается объемное изделие, называется рабочей зоной и имеет размеры, задаваемые величиной хода сопла. Причем опалубки не требуется. То есть, строительная машина объемной печати декларируется как самодостаточный механизм, способный, при подключении электроэнергии, буквально на голом месте создать готовое здание.

Известно о трех способах создания объемной конструкции:
1. Послойное эктрудирование вязкой рабочей смеси.
В этом случае из рабочего «сопла» выдавливается, подобно зубной пасте из тюбика, сметанообразная смесь бетона с добавками.

Первым обосновал концепцию применения робота в строительстве, в виде крана-манипулятора, укладывающего вязкую бетонную смесь по заданной программе, промышленный дизайнер Сергей Дудин совместно со специалистами МХТИ имени Д. И. Менделеева в 1995 году. Первая публичная презентация о подобной технологии в строительстве, организована профессором Барухом Кошневицем из Южно-Калифорнийского Университета (University of Southern California) в августе 2012 года. Его же группа выдвинула концепт гигантского, собираемого на месте стройки принтера по типу мостового крана.

….Из перечисленных способов формирования объема, внимание строителей привлекает в первую очередь, метод послойного экструдирования во многом потому, что уже сейчас созданы достаточно большие несущие поверхности и даже настоящие дома.

И если Европейские архитекторы демонстрируют в первую очередь, эстетическую и экологическую направленность, то Китайцы в своих разработках предельно прагматичны. Многих романтиков 3D откровенно разачаровала серия простых и грубовато выглядящих домиков китайской фирмы. Между тем, упускается из виду, что эти прямоугольные простецкие сооружения являются звеном четко обозначенной технологической цепочки.

Планируется массово построить фабрики по переработке строительных отходов и мусора, полученный материал будет использоваться при подготовке рабочей смеси для 3Д принтера. Учитывая большие достижения Китая в области биоэнергетики, а именно распространенность ветровых, солнечных и биоэлектростанций, можно предположить, что на свалках строительного мусора будут установлены гигантские измельчители строительного мусора, питаемые электроэнергией от ближайшей биоэлектростанции. ….

3D-принтер в строительстве –это роботизация производства, своего рода конвейер. естественно, все смежные отрасли в этой цепочке соответствуют стандартам эпохи роботов. Где будет производиться рабочая смесь, как будет решаться транспортная логистика (если раствор готовится рядом с возводимым объектом, то доставка не нужна), формат склада комплектующих ( создается общий на весь поселок или смежник подвозит партию на конкретный домик), на эти и многие другие вопросы решение, несомненно, будет предложено. Специалисты, ведущие разработки технологий объемной печати, действуют очень активно, 3D методы внедряются в жизнь общества с небывалой со времен первой НТР скоростью. Если во время презентации Баруха Кошневица, состоявшейся в 2012 году, осторожно назывались 2017-2020 годы как порог начала эксплуатации строительных роботов, то в реальности, уже в феврале 2014 года была демонстративно напечатана серия настоящих домов в Китае.

Помимо возможности строить по настоящему недорогое массовое жилье, скажем так, стандартного класса, появляются оригинальные концепты, предлагающие возможность снять остроту нехватки жилья в мегаполисах. В Германии Петер Эбнер и его студенты напечатали дом-ракушку» (1). Это небольшое, хорошо оборудованное для жизни постройку можно перемещать с места на место.

Помимо новейших технологий, при неофеодализме ожидается ренесанс некоторых традиционных материалов, долго время считавшихся устаревшими. Это саман (кирпич — сырец из глины, смешанной с соломой), строительные смеси на основе камыша и камышовые маты, соломенные маты и строительные смеси на основе соломы в качестве утеплителя. Основное достоинство этих материалов заключается в относительной дешевизне их изготовления, доступность и дешевизна сырья. Камышовые и соломенные брикеты одновременно могут использоваться и для отопления.

Будут пользоваться популярностью постройки либо передвижные (как те же дома-ракушки, жилые трейлеры) либо наоборот, углубленные в землю.

Первые делают человека мобильным, позволяют гибко реагировать на изменение условий жизни. Вторые меньше привлекают внимание, при правильном выборе места постройки, гидро- и теплоизоляции они лучше защищают от погодных аномалий, позволяют экономить электроэнергию.

Особую роль будет играть искусство возведения и монтажа объектов альтернативной энергетики: солнечных панелей, ветряков, малых гидроэлектростанций. Для этого придётся возрождать навыки привязки построек к местности: освещенности, направлению ветров, особенностям близлежащих рек.

Таким образом, основой неофеодального строительства являются 3D- технологии, возрождение применения некоторых традиционных материалов, возрождения навыков тонко учитывать природное окружения здания, развитие навыков строительства передвижных, подземных и полуподземных жилищ.

  1. Dmkr68Обзорная статья по 3D строительным технологиям // https://geektimes.ru ( дата обращения — 05. 12. 2017).

 

Неофеодальный дом.
Крыша должна иметь скаты, под углом 30 – 40 градусов к плоскости, один из скатов должен быть ориентирован на юг.
У дома должны быть толстые теплоизолирущие стены, пусть даже из дешевого самана. Окна и двери должны быть небольшие. Твердотопливная печь может сама по себе отапливает небольшое пространство. Если она подключена к водяной отопительной системе, то тем обширней и разветвлённей система, тем больше нужно топливо. А оно не всегда и везде может быть доступно в нужном количестве. Поэтому неофеодальный дом должен быть по возможности небольшим.
Но у дома должен быть обширный теплоизолированный подвал ( поэтому лучше именно подвал, а не подвальный этаж). В таком подвале можно что-либо выращивать, например, грибы, временно держать домашнюю живность в слишком жаркую или холодную погоду. Подвал может служить домашним бомбоубежищем, и быть «холодной» кладовкой. В случае сравнительно высоких грунтовых вод пригодится хорошо теплоизолированный надземный повальный этаж, который можно будет временно отапливать отдельными печами. В подвал / подвальный этаж желателен отдельный вход не из дома. т

Необходимо восстанавливать технологии сооружения подвалов, больших по площади самого строения, хотя бы в одну сторону. Для этого пригодится конверсия оборонных технологий.

Камыш – строительный материал и топливо.

В наше время всё острее встаёт вопрос о производстве дешевых и экологически чистых строительных материалов, которые можно производить прямо на дому. Один из них – камышит, ранее широко производившийся в различных регионах страны, но незаслуженно забытый в последней четверти XX в.

Сырьё для камышита – собственно, камыш, легко доступно в различных местностях. Вот как описывает камышит нормативная литература:

«6.23. Камышит представляет собой плиты из спрессованных, ровноуложенных стеблей камыша, прошитых в несколько рядов проволокой.

6.24. Сшитый камыш устойчив против загнивания, так как стебель покрыт защитным слоем кремневых отложений. Камышитовые плиты изготавливают двух типов: с поперечным (тип А) и продольным (тип Б)расположением стеблей. Их размеры, в мм: длина 2400…2800, ширина 550…1500 и толщина 30… 100 .

6.25. Средняя плотность зависит от усилия прессования и составляет 175 …250 кг/м3, предел прочности при изгибе около 0,5МПа, теплопроводность 0,058 … 0,093 Вт/(м°С). Достаточная прочность при изгибе даёт возможность использовать эти плиты в качестве самонесущей, утепляющей конструкции. Камышит толщиной 10 см, оштукатуренный с обеих сторон, соответствует по своим теплозащитным свойствам деревянной стене из брусьев толщиной 22 см или кирпичной стене толщиной в 2,5 кирпича.

6.26. Камышит не горит открытым пламенем, а тлеет. Под воздействием огня камышит подвергается поверхностному обугливанию на глубину1-2см; образующийся слой золы препятствует доступу воздуха внутрь плиты и крайне затрудняет и даже прекращает возможное горение.

Длина стеблей камыша в плитах типа А должна быть не менее ширины плиты, однако в плитах толщиной 70 и 100 мм допускается до 25% стеблей длиной не менее 3/4 ширины плиты.

6.28. Для защиты от гниения и повреждения грызунами камышитовые плиты пропитывают антисептиком, обычно 5% раствором медного или железного купороса.

6.29. Для прошивки плит применяется стальная оцинкованная проволока диаметром от 1,6 до 2 мм, а при прошивке непрерывным швом значительно тоньше, но не менее 0,7 мм» (1).

Помимо собственно камышитовых плит из камыша изготавливаются многофункциональные плетёные маты (без спрессовывания), однослойные и многослойные.

Станки для производства камышовых плит и матов вполне можно устанавливать на дому. Некоторые устройства весьма и весьма просты. «Укладывается проволока, затем порциями сверху укладывается камыш и проволочные вязки. После набора этот пирог сверху сжимается доской, уложенной на ребро, основная проволока загибается вверх и скрепляется проволочными вязками.

Основная проволока располагается рядами поперек стеблей с промежутками 140-160 мм, после прессования ее концы, поднятые вверх, туго скручиваются. Поперечные стяжки расположены с интервалом 100 мм, ими охватывается основная проволока и концы также туго скручиваются…» (2).

Существуют устройства и для измельчения камыша. С применением измельчённого камыша изготавливаются такие материалы, как арболит (бетон с камышовым наполнителем и химическим добавками).

Проблемные моменты камыша как строительного материала – пожароопасность, сравнительно хорошие условия для поселения в здании мышей и крыс.

Камыш и другие виды тростников можно использовать как топливо. Хотя в  биомассе тростника содержание влаги может достигать 50%, однако после сушки на воздухе, а также благодаря уборке в зимнее время её уровень снижается до 20-25%. Данное обстоятельство позволяет производить из тростника топливные брикеты с минимальными затратами энергии на сушку сырья. Тростник обладает высокой теплотворной способностью.

Тростник имеет высокий уровень содержания лигнина – полимера, являющегося естественным природным связующим, улучшающим физические параметры топливных брикетов (плотность, прочность, устойчивость к истиранию и т.д.).В отличие от нефтепродуктов и угля, тростник имеет низкое содержание серы и других вредных примесей.

Камыш горит весьма быстро, и для отопления есть смысл использовать только хорошо спрессованные топливные брикеты. Для производства которых также существуют минилинии (5).

Солома же и остатки злаковых растений из –за слабой устойчивости к  разного рода воздействиям пригодны лишь в качестве экологически чистого утеплителя и топливных брикетов.

Примечания.

  1. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ МЕСТНЫХ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ ПРИ СТРОИТЕЛЬСТВЕЖИВОТНОВОДЧЕСКИХ ЗДАНИЙ // https://ohranatruda.ru(дата обращения – 20. 05. 2017).
  2. Камышитовые плиты // http://www.samostroj.ru(дата обращения – 20. 05. 2017).
  3. Арболит // https://ru.wikipedia.org(дата обращения – 20. 05. 2017).
  4. Производство топливных брикетов из камыша // http://bio.ukrbio.com(дата обращения – 20. 05. 2017).
  5. Топливные брикеты Пллеты, алтернативное топливо // http://press-briket.blogspot.ru(дата обращения – 20. 05. 2017).

Топить соломой

На Юге России делали топливные брикеты, похожие на кирпич – саман, которые изготавливали весной из накопившегося в загонах для крупного рогатого скота навоза вперемешку соломой. Солома по теплотворности превышает дрова и уголь, не загрязняет дымоход.

Газовые и твердотоплевные котлы

Отопительные котлы на газе и нефтепродуктах стоят дешевле. Зато для твердотопливных гораздо дешевле топливо.

 

Альтернативная энергетика для «частника»: некоторые реалии.

Пока солнечные батареи и энергию ветра в России используют состоятельные люди, частные фирмы и государственные учреждения. Особенно если речь идет об электроснабжении офисных и жилых помещений, складов и автостоянок. Для производственных нужд мощности электроэнергии, добытой альтернативным путём, как правило, недостаточно. В среднем установка подобного энергетического комплекса стоит от ста тысяч рублей.

Продавцы активно предлагают монокристаллические батареи под предлогом того, что в солнечную погоду они более эффективны. Но на деле они просто более дорогие. Поликристаллические батареи на деле дешевле и  более эффективны там, где солнечных дней относительно поровну или меньше с солнечными.

Умелому человеку гораздо проще собрать батарею самому из купленных по Интернету отдельных элементов светоулавливающих панелей. Особенно дёшево можно купить битые элементы. Они не столь эффективны по отдельности, но приобрести их можно много по бросовой цене.

При использовании солнечных батарей небогатыми частными домохозяевами, приобретающими их ради экономии,  встаёт вопрос об их резком удешевлении. Например, уникальная технология краснодарского изобретателя Дмитрия Лопатина, основанная на нанесение специального светоулавливающего покрытия на твёрдую поверхность. Сейчас Дмитрий Лопатин живёт и работает в Индии…

В качестве электроаккумуляторов для нужд альтернативно энергетики рекомендуют использовать аналогичные применяемым в городском электротранспорте.

Ветровые генераторы пропеллерного типа эффективны там, где регулярно дует  сильный ветер. Барабанные генераторы с системой из нескольких вращающихся элементов можно использовать и там, где погоды не столь ветреная.

 

 

Иногда полезное производство или промысел вредит природе

Иногда полезное производство или промысел вредит природе. Тогда надо целенаправленно бороться за его большую экологичность. Например, часть доходов от производства, должны выделяться на устранение экологических проблем, при возможно снижении других видов обложения.

Правильный подход к экологическому движению

Правильный подход к экологическому движению: деятельность во благо людей – защита окружающей среды от вредных для человеческого организма веществ, защита, увеличение поголовья промысловых животных, полезных растений.

Ложный поход к экологическому движению

Ложный поход к экологическому движению: деятельность во вред людям — пытаться уничтожить производство, полезное для многих людей, подрыв традиционных промыслов (охота), запрет уничтожать опасных животных.