Может быть, в будущем искусственный интеллект будут вести некую свою политику

Может быть, в будущем искусственный интеллект будут вести некую свою политику, не прямо античеловеческую, но весьма своеобразную. «Смотрящие» за ИИ – политику несколько другую. А наиболее продвинутые люди, учитывая их своеобразие — свою.

Зависимость альтернативной энергетики от климата и рельефа – 2

Зависимость альтернативной энергетики от климата и рельефа – 2.

Эффективна или неэффективна солнечная или ветряная энергетика, нужно решать в каждой отдельной географической точке, с учётом местного климата и рельефа местности. Желающий установить у себя солнечные батареи или ветряк, должен вначале узнать количество солнечных дней, интенсивность излучения, особенность дующих в этой местности ветров.

А потом сопоставить эти данные с собственными потребностями в электроэнергии и возможностями оборудования.

На пересечённой местности возникает ещё больше вопросов, например, насколько возведение чего –либо здесь безопасно с точки зрения оползней, селей и пр.. Нужный уровень освещённости и продуваемости может быть в малопригодных местах…

Поэтому одному условному фермеру использование альтернативных источников энергии может оказаться полезным, а для его соседа – бессмысленным. Нужно также учитывать особенности погоды в разное время года, сочетать альтернативную энергетику с другими её видами.

К тому же климат и микроклимат подвержены переменам. И фанат альтернативной энергетики должен быть (по крайней мере, теоретически) быть готовым к переселению.

Бизнес и карго-культ

«Продвижение» ряда крупных фирм практически превратилось в создание квазирелигиозного карго- культа. Без карго-культа не будет нужной капитализации.

Водородные электростанции — тенденции и перспективы

Водородные электростанции — тенденции и перспективы

Первоначальная публикация

6 http://electricalschool.info/energy/1952-vodorodnye-jelektrostancii-tendencii-i.html

От редакции: Относительно дорогой и отчасти опасный вид добычи электроэнергии. Зависит от наличия достаточно большого количества воды. Но даёт больше полезной энергии, чем некоторые альтернативные виды. Независим от ряда климато-географических параметров.

 

  Хотя атомные электростанции уже давно считаются весьма безопасными, авария на японской АЭС Фукусима в 2011 году вновь заставила энергетиков по всему миру задуматься о возможных экологических проблемах, связанных с этим видом энергии.

Правительства многих стран, в том числе и ряда стран ЕС, заявляют о четком намерении перевести свои экономики на альтернативную энергетику, не скупясь на инвестиции, закладывая на данную отрасль миллиарды евро на ближайшие 5-10 лет. И одним из наиболее перспективных и экологически безопасных видов такой альтернативы выступает водород.

Если уголь, газ и нефть все равно когда-нибудь закончатся, то уж водорода то в океанах просто безгранично, хотя и не в чистом виде он там запасен, а в виде химического соединения с кислородом — в виде воды.

Экологическая безопасность водорода, в сравнении с иными традиционными видами источников энергии, ни у кого не вызывает сомнений: продукт сгорания водорода — опять же вода в форме пара, при этом он совершенно нетоксичен.

Водород в качестве топлива может быть легко применен в двигателях внутреннего сгорания без принципиальной их переделки, а также в турбинах, причем энергии получится больше, чем из бензина. Если удельная теплота сгорания бензина в воздухе составляет примерно 44 Мдж/кг, то для водорода этот показатель составляет примерно 141 Мдж/кг — это более чем в 3 раза выше. Нефтепродукты к тому же токсичны.

Хранение и транспортировка водорода не вызовет особых проблем, логистика похожа на оную для пропана, однако водород более взрывоопасен чем метан, поэтому некоторые нюансы все же здесь имеются.

Решения относительно хранения водорода состоят в следующем. Первый путь — традиционное сжатие и ожижение, когда для поддержания жидкого состояния водорода потребуется обеспечить сверхнизкую его температуру. Это затратно.

Второй путь — более перспективный — он основан на способности некоторых композитных металлических губок (высокопористых сплавов ванадия, титана и железа) активно поглощать водород, а при слабом нагреве — отдавать его.

 

Ведущие нефтегазовые компании, такие как Enel и BP, — активно занимаются сегодня разработками в области водородной энергетики. Итальянская Enel несколько лет назад запустила первую в мире водородную электростанцию, которая не загрязняет атмосферу, не выбрасывает парниковых газов. Но главное больное место данного направления заключается в таком вопросе: как сделать промышленное получение водорода более дешевым?

Проблема в том, что электролиз воды требует очень много электричества, и если поставить на поток получение водорода именно электролизом воды, то для экономики в рамках одной отдельно взятой страны этот способ промышленной добычи водорода будет весьма затратным: втрое, если не вчетверо, дороже по эквивалентной теплоте сгорания, чем нефтепродукты. К тому же с одного квадратного метра электродов промышленного электролизера можно получить максимум 5 кубометров газа в час. Это медленно и экономически нецелесообразно.

Один из более перспективных путей получения водорода в промышленных объемах — плазмохимический способ. Водород здесь получается менее дорогим, чем при электролизе воды. В неравновесных плазмотронах электрический ток проходит через ионизированный газ в магнитном поле, и химическая реакция идет в процессе передачи энергии от «разогретых» электронов — к молекулам газа.

Температура газа находится в диапазоне от +300 до +1000 °С, при этом скорость протекания реакции, приводящей к получению водорода, выше чем при электролизе. Этот способ дает возможность получать водород, который оказывается вдвое (а не втрое) дороже, чем традиционное топливо, получаемое из углеводородов.

Плазмохимический процесс идет в два этапа: вначале углекислый газ разлагается на кислород и оксид углерода, затем оксид углерода взаимодействует с водяным паром, в результате чего получается водород и тот же углекислый газ, что был в начале (он не расходуется, если смотреть на весь цикл превращения).

На экспериментальной стадии — плазмохимическое получение водорода из сероводорода, который всюду остается вредным продуктом в процессе разработки газовых и нефтяных месторождений. Вращающаяся плазма центробежными силами просто выбрасывает из зоны реакции молекулы серы, и обратная реакция превращения в сероводород исключается. Данная технология уравнивает стоимость получаемого водорода с традиционными видами органического топлива, к тому же параллельно добывается сера.

А Япония уже сегодня плотно взялась за практическое развитие водородной энергетики. Компании Kawasaki Heavy Industries и Obayashi уже к 2018 году планируют начать использование водородной энергии для электроснабжения города Кобе. Они станут первопроходцами среди тех, кто реально начнет использовать водород для большой энергетики практически без вредных выбросов.

Водородная электростанция мощностью 1 МВт будет возведена прямо в г.Кобе, где позволит снабдить электричеством международный конференц-центр и рабочие офисы 10000 местных жителей. А тепло, выделяемое на станции в процессе получения электричества из водорода, станет эффективным отоплением для местных домов и офисных зданий.

 

В газовые турбины производства Kawasaki Heavy Industries будет подаваться, конечно, не чистый водород, а топливная смесь, содержащая лишь 20% водорода, а 80% — природного газа. В год станция станет потреблять количество водорода, эквивалентное 20000 автомобилям на водородных топливных элементах, но этот опыт станет началом развития большой водородной энергетики в Японии и за ее пределами.

Запасы водорода будут храниться прямо на территории электростанции, и даже в случае землетрясения или другого стихийного бедствия топливо на станции будет, станция не окажется отрезана от жизненно необходимых коммуникаций. К 2020 году в порту города Кобе будет налажена инфраструктура для крупного импорта водорода, ибо в планах компании Kawasaki Heavy Industries — развить в Японии большую сеть электроэнергетических объектов на водороде.

 

Лисица в стране чудес (памяти зимы)

Лисица в стране чудес  (памяти зимы).

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000jpg

Лисице удалось поймать зимнего зайца. Ему было голодно, и он увлёкся добычей еды из-под снега.  Белая шкура не спасла зайца.

Съесть зайца было не вариант, потому что его уже искали волки.

Лисица с зайцев в зубах побежала туда, где не было волков. Но там был лось, который тоже прятался от волков. Поэтому волки скоро пришли и сюда, и лисице пришлось убегать с недоеденным зайцем.

Лось был гораздо интересней волкам, чем лисица и недоеденный заяц. И лисица успела убежать далеко, туда, где никто не ходил, потому что там некого было ловить. Там можно было спокойно съесть зайца. Что лисица и сделала.

Здесь было хорошо сытому, потому что остались только замёрзшие зонты, оставшиеся от травы. Им уже было всё рано, и они спокойно и красиво леденели, не боясь ветра и не пытаясь никого съесть.

«Хорошо как! Но если часто ходить сюда есть добычу, все поймут, что тут тоже есть пища, хоть и недолго» — с грустью подумала лиса. «Главное, съедать всё, чтоб никому ничего не доставалось» — ободрилась лисица.

Квантовая криптография

Квантовая криптография

Первоначальная публикация — в «Википедии»https://ru.wikipedia.org/wiki/Квантовая_криптография
От редакции — квантовая телефония, компьютерная техника и пр. может стать важными элементами элитного сегмента неофеодальной техники. Тогда как менее элитные люди будут пользоваться изобретениями прошлых эпох, такими, как радиосвязь

Квантовая криптография — метод защиты коммуникаций, основанный на принципах квантовой физики. В отличие от традиционной криптографии, которая использует математические методы, чтобы обеспечить секретность информации, квантовая криптография сосредоточена на физике, рассматривая случаи, когда информация переносится с помощью объектов квантовой механики. Процесс отправки и приёма информации всегда выполняется физическими средствами, например, при помощи электронов в электрическом токе, или фотонов в линиях волоконно-оптической связи. Подслушивание может рассматриваться как изменение определённых параметров физических объектов — в данном случае, переносчиков информации.

Технология квантовой криптографии опирается на принципиальную неопределённость поведения квантовой системы, выраженную в принципе неопределённости Гейзенберга — невозможно одновременно получить координаты и импульс частицы, невозможно измерить один параметр фотона, не исказив другой.

Используя квантовые явления можно спроектировать и создать такую систему связи, которая всегда может обнаруживать подслушивание. Это обеспечивается тем, что попытка измерения взаимосвязанных параметров в квантовой системе вносит в неё нарушения, разрушая исходные сигналы, а значит, по уровню шума в канале легитимные пользователи могут распознать степень активности перехватчика.

История возникновения

Впервые идея защиты информации с помощью квантовых объектов была предложена Стивеном Визнером в 1970 году. Спустя десятилетие Чарльз Беннет (IBM) и Жиль Брассар (Монреальский университет), знакомые с работой Визнера, предложили передавать секретный ключ с использованием квантовых объектов. В 1984 году они предположили возможность создания фундаментально защищённого канала с помощью квантовых состояний. После этого ими была предложена схема (BB84), в которой легальные пользователи (Алиса и Боб) обмениваются сообщениями, представленными в виде поляризованных фотонов, по квантовому каналу.

Злоумышленник (Ева), пытающийся исследовать передаваемые данные, не может произвести измерение фотонов без искажения текста сообщения. Легальные пользователи по открытому каналу сравнивают и обсуждают сигналы, передаваемые по квантовому каналу, тем самым проверяя их на возможность перехвата. Если ими не будет выявлено никаких ошибок, то переданную информацию можно считать случайно распределённой, случайной и секретной, несмотря на все технические возможности, которые может использовать криптоаналитик.

Первое устройство квантовой криптографии

Первая квантово-криптографическая схема. Система состоит из квантового канала и специального оборудования на обоих концах схемы.

Первая работающая квантово-криптографическая схема была построена в 1989 году в Исследовательском центре компании IBM Беннетом и Брассаром. Данная схема представляла собой квантовый канал, на одном конце которого был передающий аппарат Алисы, на другом принимающий аппарат Боба. Оба аппарата были размещены на оптической скамье длиной около 1 м, в светонепроницаемом кожухе размерами 1,5 × 0,5 × 0,5 м. Управление происходило с помощью компьютера, в который были загружены программные представления легальных пользователей и злоумышленника.

Сохранность тайны передаваемых данных напрямую зависит от интенсивности вспышек света, используемых для передачи. Слабые вспышки, хоть и делают трудным перехват сообщений, все же приводят к росту числа ошибок у легального пользователя, при измерении правильной поляризации. Повышение интенсивности вспышек значительно упрощает перехват путём расщепления начального одиночного фотона (или пучка света) на два: первого по-прежнему направленному легальному пользователю, а второго анализируемого злоумышленником. Легальные пользователи могут исправлять ошибки с помощью специальных кодов, обсуждая по открытому каналу результаты кодирования.

Но всё-таки при этом часть информации попадает к криптоаналитику. Тем не менее, легальные пользователи Алиса и Боб, изучая количество выявленных и исправленных ошибок, а также интенсивность вспышек света, могут дать оценку количеству информации, попавшей к злоумышленнику.

Простейший алгоритм генерации секретного ключа (BB84)

Схема ВВ84 работает следующим образом. Вначале отправитель (Алиса) производит генерацию фотонов со случайной поляризацией, выбранной из 0, 45, 90 и 135°. Получатель (Боб) принимает эти фотоны, затем для каждого выбирает случайным образом способ измерения поляризации, диагональный или перпендикулярный. Затем по открытому каналу сообщает о том, какой способ он выбрал для каждого фотона, не раскрывая при этом самих результатов измерения. После этого Алиса по тому же открытому каналу сообщает, правильный ли был выбран вид измерений для каждого фотона. Далее Алиса и Боб отбрасывают те случаи, когда измерения Боба были неверны. Если не было перехвата квантового канала, то секретной информацией или ключом и будут оставшиеся виды поляризации. На выходе будет последовательность битов: фотоны с горизонтальной или 45°-й поляризацией принимаются за двоичный «0», а с вертикальной или 135°-й поляризацией — за двоичную «1». Этот этап работы квантово-криптографической системы называется первичной квантовой передачей.

Алиса посылает фотоны, имеющие одну из четырёх возможных поляризаций, которую она выбирает случайным образом.

Для каждого фотона Боб выбирает случайным образом тип измерения: он изменяет либо прямолинейную поляризацию (+), либо диагональную (х).

Боб записывает результаты изменения и сохраняет в тайне.

Боб открыто объявляет, какого типа измерения он проводил, а Алиса сообщает ему, какие измерения были правильными.

Алиса и Боб сохраняют все данные, полученные в тех случаях, когда Боб применял правильное измерение. Эти данные затем переводятся в биты (0 и 1), последовательность которых и является результатом первичной квантовой передачи.

Следующим этапом очень важно оценить попытки перехватить информацию в квантово-криптографическом канале связи. Это производится по открытому каналу Алисой и Бобом путём сравнения и отбрасывания подмножеств полученных данных случайно ими выбранных. Если после такого сравнения будет выявлен перехват, то Алиса и Боб должны будут отбросить все свои данные и начать повторное выполнение первичной квантовой передачи. В противном случае они оставляют прежнюю поляризацию. Согласно принципу неопределённости, криптоаналитик (Ева) не может измерить как диагональную, так и прямоугольную поляризацию одного и того же фотона. Даже если им будет произведено измерение для какого-либо фотона и затем этот же фотон будет переслан Бобу, то в итоге количество ошибок намного увеличится, и это станет заметно Алисе. Это приведет к тому, что Алиса и Боб будут полностью уверены в состоявшемся перехвате фотонов. Если расхождений нет, то биты, использованные для сравнения, отбрасываются, ключ принимается. С вероятностью {\displaystyle 1-2^{-k}} (где k — число сравненных битов) канал не прослушивался.

Если недоброжелатель может не только прослушивать основной канал «Алиса → Боб», но и может фальсифицировать работу открытого канала Боб → Алиса, то вся схема рушится (Man-In-The-Middle).

Описанный алгоритм носит название протокола квантового распределения ключа BB84. В нём информация кодируется в ортогональные квантовые состояния. Помимо использования ортогональных состояний для кодирования информации, можно использовать и неортогональные состояния (например, протокол B92).

Алгоритм Беннета

В 1991 году Чарльзом Беннетом был предложен следующий алгоритм для выявления искажений в переданных по квантовому каналу данных:

  • Отправитель и получатель заранее оговаривают произвольность расположения битов в строках, что определяет произвольный характер положения ошибок.
  • Все строки разбиваются на блоки длины k. Где k выбирается так, чтобы минимизировать вероятность ошибки.
  • Отправитель и получатель определят четность каждого блока, и сообщают её друг другу по открытому каналу связи. После этого в каждом блоке удаляют последний бит.
  • Если четность двух каких-либо блоков оказалось различной, отправитель и получатель производят итерационный поиск неверных битов и исправляют их.
  • Затем весь алгоритм выполняется заново для другого (большего) значения k. Это делается для того, чтобы исключить ранее незамеченные кратные ошибки.
  • Чтобы определить все ли ошибки были обнаружены, проводится псевдослучайная проверка. Отправитель и получатель открыто сообщают о произвольной перестановке половины бит в строках, а затем вновь открыто сравнивают четности (Если строки различны, четности обязаны не совпадать с вероятностью 0,5). Если четности отличаются, отправитель и получатель производят двоичный поиск и удаляют неверные биты.
  • Если различий не наблюдается, после n итераций отправитель и получатель будут иметь одинаковые строки с вероятностью ошибки 2-n.

Физическая реализация системы

Рассмотрим схему физической реализации квантовой криптографии[1]. Слева находится отправитель, справа — получатель. Для того, чтобы передатчик имел возможность импульсно варьировать поляризацию квантового потока, а приёмник мог анализировать импульсы поляризации, используются ячейки Поккельса. Передатчиком формируется одно из четырёх возможных состояний поляризации. На ячейки данные поступают в виде управляющих сигналов. Для организации канала связи обычно используется волокно, а в качестве источника света берут лазер.

На стороне получателя после ячейки Поккельса расположена кальцитовая призма, которая должна расщеплять пучок на две составляющие, улавливаемые двумя фотодетекторами (ФЭУ), а те, в свою очередь, измеряют ортогональные составляющие поляризации. Вначале необходимо решить проблему интенсивности передаваемых импульсов квантов, возникающую при их формировании. Если в импульсе содержится 1000 квантов, существует вероятность того, что 100 из них будут отведены криптоаналитиком на свой приёмник. После чего, проводя анализ открытых переговоров, он сможет получить все необходимые ему данные. Из этого следует, что идеален вариант, когда в импульсе количество квантов стремится к одному. Тогда любая попытка перехватить часть квантов неизбежно изменит состояние всей системы и соответственно спровоцирует увеличение числа ошибок у получателя. В этой ситуации следует не рассматривать принятые данные, а заново повторить передачу. Однако, при попытках сделать канал более надёжным, чувствительность приёмника повышается до максимума, и перед специалистами встаёт проблема «темнового» шума. Это означает, что получатель принимает сигнал, который не был отправлен адресантом. Чтобы передача данных была надёжной, логические нули и единицы, из которых состоит двоичное представление передаваемого сообщения, представляются в виде не одного, а последовательности состояний, что позволяет исправлять одинарные и даже кратные ошибки.

Для дальнейшего увеличения отказоустойчивости квантовой криптосистемы используется эффект Эйнштейна — Подольского — Розена, возникающий в том случае, если сферическим атомом были излучены в противоположных направлениях два фотона. Начальная поляризация фотонов не определена, но в силу симметрии их поляризации всегда противоположны. Это определяет тот факт, что поляризацию фотонов можно узнать только после измерения. Криптосхема на основе эффекта Эйнштейна — Подольского — Розена, гарантирующая безопасность пересылки, была предложена Экертом. Отправителем генерируется несколько фотонных пар, после чего один фотон из каждой пары он откладывает себе, а второй пересылает адресату. Тогда если эффективность регистрации около единицы и на руках у отправителя фотон с поляризацией «1», то у получателя будет фотон с поляризацией «0» и наоборот. То есть легальные пользователи всегда имеют возможность получить одинаковые псевдослучайный последовательности. Но на практике оказывается, что эффективность регистрации и измерения поляризации фотона очень мала.

Практические реализации системы

В 1989 году Беннет и Брассар в Исследовательском центре IBM построили первую работающую квантово-криптографическую систему. Она состояла из квантового канала, содержащего передатчик Алисы на одном конце и приёмник Боба на другом, размещённые на оптической скамье длиной около метра в светонепроницаемом полутораметровом кожухе размером 0,5 × 0,5 м. Собственно квантовый канал представлял собой свободный воздушный канал длиной около 32 см. Макет управлялся от персонального компьютера, который содержал программное представление пользователей Алисы и Боба, а также злоумышленника. В том же году передача сообщения посредством потока фотонов через воздушную среду на расстояние 32 см с компьютера на компьютер завершилась успешно. Основная проблема при увеличении расстояния между приёмником и передатчиком — сохранение поляризации фотонов. На этом основана достоверность способа.

Созданная при участии Женевского университета компания GAP-Optique под руководством Николаса Гисина совмещает теоретические исследования с практической деятельностью. Первым результатом этих исследований стала реализация квантового канала связи с помощью оптоволоконного кабеля длинной 23 км, проложенного по дну озера и соединяющего Женеву и Нион. Тогда был сгенерирован секретный ключ, уровень ошибок которого не превышал 1,4 %. Но все-таки огромным недостатком этой схемы была чрезвычайно малая скорость передачи информации. Позже специалистам этой фирмы удалось передать ключ на расстояние 67 км из Женевы в Лозанну с помощью почти промышленного образца аппаратуры. Но и этот рекорд был побит корпорацией Mitsubishi Electric, передавшей квантовый ключ на расстояние 87 км, правда, на скорости в один байт в секунду.

Активные исследования в области квантовой криптографии ведут IBM, GAP-Optique, MitsubishiToshibaНациональная лаборатория в Лос-АламосеКалифорнийский технологический институт, молодая компания MagiQ и холдинг QinetiQ, поддерживаемый британским министерством обороны. В частности, в национальной лаборатории Лос-Аламоса была разработана и начала широко эксплуатироваться опытная линия связи, длиной около 48 километров. Где на основе принципов квантовой криптографии происходит распределение ключей, и скорость распределения может достигать несколько десятков кбит/с.

В 2001 году Эндрю Шилдс и его коллеги из TREL и Кембриджского университета создали диод, способный испускать единичные фотоны. В основе нового светодиода лежит «квантовая точка» — миниатюрный кусочек полупроводникового материала диаметром 15 нм и толщиной 5 нм, который может при подаче на него тока захватывать лишь по одной паре электронов и дырок. Это дало возможность передавать поляризованные фотоны на большее расстояние. В ходе экспериментальной демонстрации удалось передать зашифрованные данные со скоростью 75 Кбит/с — при том, что более половины фотонов терялось.

В Оксфордском университете ставятся задачи повышения скорости передачи данных. Создаются квантово-криптографические схемы, в которых используются квантовые усилители. Их применение способствует преодолению ограничения скорости в квантовом канале и, как следствие, расширению области практического применения подобных систем.

В Университете Джона Хопкинса на квантовом канале длиной 1 км построена вычислительная сеть, в которой каждые 10 минут производится автоматическая подстройка. В результате этого, уровень ошибки снижен до 0,5 % при скорости связи 5 кбит/с.

Министерством обороны Великобритании поддерживается исследовательская корпорация QinetiQ, являющаяся частью бывшего британского агентства DERA (Defence Evaluation and Research Agency), которая специализируется на неядерных оборонных исследованиях и активно совершенствует технологию квантового шифрования.

Исследованиями в области квантовой криптографии занимается американская компания Magiq Technologies из Нью-Йорка, выпустившая прототип коммерческой квантовой криптотехнологии собственной разработки. Основной продукт Magiq — средство для распределения ключей (quantum key distribution, QKD), которое названо Navajo (по названию племени индейцев Навахо, язык которых во время Второй мировой войны американцы использовали для передачи секретных сообщений, поскольку за пределами США его никто не знал). Navajo способен в реальном времени генерировать и распространять ключи средствами квантовых технологий и предназначен для обеспечения защиты от внутренних и внешних злоумышленников.

В октябре 2007 года на выборах в Швейцарии были повсеместно использованы квантовые сети, начиная избирательными участками и заканчивая датацентром ЦИК. Была использована техника, которую ещё в середине 90-х в Университете Женевы разработал профессор Николя Жизен. Также одним из участников создания такой системы была компания Id Quantique.

В 2011 году в Токио прошла демонстрация проекта «Tokyo QKD Network», в ходе которого разрабатывается квантовое шифрование телекоммуникационных сетей. Была проведена пробная телеконференция на расстоянии в 45 км. Связь в системе идёт по обычным оптоволоконным линиям. В будущем предполагается применение для мобильной связи.

Квантовый криптоанализ

 

Частотный спектр в оптическом канале квантово-криптографической системы.

Широкое распространение и развитие квантовой криптографии не могло не спровоцировать появление квантового криптоанализа, который в ряде случаев обладает, согласно теории, преимуществами перед обычным. Рассмотрим, например, всемирно известный и распространенный в наши дни алгоритм шифрования RSA (1977). В основе этого шифра лежит идея того, что на простых компьютерах невозможно решить задачу разложения очень большого числа на простые множители, ведь данная операция потребует астрономического времени и экспоненциально большого числа действий. Другие теоретико-числовые методы криптографии могут быть основаны на проблеме дискретного логарифмирования. Для решения этих двух проблем был разработан квантовый алгоритм Шора (1994), позволяющий найти за конечное и приемлемое время все простые множители больших чисел или решить задачу логарифмирования, и, как следствие, взломать шифры RSA и ECC. Поэтому создание достаточно крупной квантовой криптоаналитической системы является плохой новостью для RSA и некоторых других асимметричных систем. Необходимо только создание квантового компьютера, способного исполнить необходимый алгоритм.

По состоянию на 2012 год наиболее продвинутые квантовые компьютеры смогли разложить на множители числа 15[2] (в 150 тыс. попыток верный ответ был получен в половине случаев, в соответствии с алгоритмом Шора[3]) и 21.

Уязвимость реализаций квантовой системы

В 2010 году учёные успешно опробовали[4][5] один из возможных способов атаки, показав принципиальную уязвимость двух реализаций криптографических систем, разработанных компаниями ID Quantique и MagiQ Technologies[6]. И уже в 2011 году работоспособность метода была проверена в реальных условиях эксплуатации, на развёрнутой в Национальном университете Сингапура системе распространения ключей, которая связывает разные здания отрезком оптоволокна длиной в 290 м.

В эксперименте использовалась физическая уязвимость четырёх однофотонных детекторов (лавинных фотодиодов), установленных на стороне получателя (Боба). При нормальной работе фотодиода приход фотона вызывает образование электронно-дырочной пары, после чего возникает лавина, а результирующий выброс тока регистрируется компаратором и формирователем импульсов. Лавинный ток «подпитывается» зарядом, хранимым небольшой ёмкостью (≈ 1,2 пФ), и схеме, обнаружившей одиночный фотон, требуется некоторое время на восстановление (~ 1 мкс).

Если на фотодиод подавать такой поток излучения, когда полная перезарядка в коротких промежутках между отдельными фотонами будет невозможна, амплитуда импульса от одиночных квантов света может оказаться ниже порога срабатывания компаратора.

В условиях постоянной засветки лавинные фотодиоды переходят в «классический» режим работы и выдают фототок, пропорциональный мощности падающего излучения. Поступление на такой фотодиод светового импульса с достаточно большой мощностью, превышающей некое пороговое значение, вызовет выброс тока, имитирующий сигнал от одиночного фотона. Это и позволяет криптоаналитику (Еве) манипулировать результатами измерений, выполненных Бобом: она «ослепляет» все его детекторы с помощью лазерного диода, который работает в непрерывном режиме и испускает свет с круговой поляризацией, и по мере надобности добавляет к этому линейно поляризованные импульсы. При использовании четырёх разных лазерных диодов, отвечающих за все возможные типы поляризации (вертикальную, горизонтальную, ±45˚), Ева может искусственно генерировать сигнал в любом выбранном ею детекторе Боба.

Опыты показали, что схема взлома работает очень надёжно и даёт Еве прекрасную возможность получить точную копию ключа, переданного Бобу. Частота появления ошибок, обусловленных неидеальными параметрами оборудования, оставалась на уровне, который считается «безопасным».

Однако, устранить такую уязвимость системы распространения ключей довольно легко. Можно, к примеру, установить перед детекторами Боба источник одиночных фотонов и, включая его в случайные моменты времени, проверять, реагируют ли лавинные фотодиоды на отдельные кванты света.

Plug & Play

Практически все квантово-оптические криптографические системы сложны в управлении и с каждой стороны канала связи требуют постоянной подстройки. На выходе канала возникают беспорядочные колебания поляризации ввиду воздействия внешней среды и двойного лучепреломления в оптоволокне. Но недавно[когда?] была сконструирована[кем?] такая реализация системы, которую можно назвать Plug and Play («подключай и работай»). Для такой системы не нужна подстройка, а только синхронизация. Система построена на использовании зеркала Фарадея, которое позволяет избежать двойного луча преломления и, как следствие, не требует регулировки поляризации. Это позволяет пересылать криптографические ключи по обычным телекоммуникационным системам связи. Для создания канала достаточно лишь подключить приёмный и передающий модули и провести синхронизацию.

Перспективы развития

Сейчас одним из самых важных достижений в области квантовой криптографии является то, что ученые смогли показать возможность передачи данных по квантовому каналу со скоростью до единиц Мбит/с. Это стало возможно благодаря технологии разделения каналов связи по длинам волн и их единовременного использования в общей среде. Что кстати позволяет одновременное использование как открытого, так и закрытого канала связи. Сейчас[уточнить] в одном оптическом волокне возможно создать около 50 каналов. Экспериментальные данные позволяют сделать прогноз на достижение лучших параметров в будущем:

  • достижение скорости передачи данных по квантовому каналу связи в 50 Мбит/с, при этом единовременные ошибки не должны будут превышать 4 %;
  • создание квантового канала связи длиной более 100 км;
  • организация десятков подканалов при разделении по длинам волн.

На данном этапе квантовая криптография только приближается к практическому уровню использования. Диапазон разработчиков новых технологий квантовой криптографии охватывает не только крупнейшие мировые институты, но и маленькие компании, только начинающие свою деятельность. И все они уже способны вывести свои проекты из лабораторий на рынок. Все это позволяет сказать, что рынок находится на начальной стадии формирования, когда в нём могут быть на равных представлены и те и другие.

Примечания

  1. Семёнов Ю. А. «Телекоммуникационные технологии»;
  2. Scientists are getting closer to a quantum computer — here’s why it matters / Vox, April 9, 2014 (англ.) «In 2012, a UC Santa Barbara quantum computer made up of four qubits factored the number 15 (its factors are 3 and 5).»
  3. «UCSB Researchers Demonstrate That 15=3×5 About Half of the Time » — UC Santa Barbara News Release
  4. Nature Communicaion «Perfect eavesdropping on a quantum cryptography system» : [1];
  5. Nature Communicaion «Full-field implementation of a perfect eavesdropper on a quantum cryptography system, June 2011» : [2];
  6. http://www.securitylab.ru/news/397300.php08.2010

Литература

Килин С. Я., Хорошко Д. Б., Низовцев А. П. «Квантовая криптография: идеи и практика»;

  • Килин С. Я.«Квантовая информация / Успехи Физических Наук.» — 1999. — Т. 169. — C. 507—527. [3];
  • Robert Malaney .«Технологии, основанные на принципе ULV (unconditional location verification)» : [4][5];
  • Computerworld Россия, № 37, 2007 [6];
  • Красавин В.«Квантовая криптография».
  • Румянцев К. Е.Плёнкин А. П.Экспериментальные испытания телекоммуникационной сети с интегрированной системой квантового распределения ключей // Телекоммуникации. 2014. № 10. С. 11 − 16.
  • Плёнкин А. П.Использование квантовых ключей для шифрования сетевого соединения // Десятая ежегодная научная конференция студентов и аспирантов базовых кафедр Южного научного центра РАН: Тезисы докладов (г. Ростов-на-Дону, 14 − 29 апреля 2014 г.). — Ростов н/Д: Изд-во ЮНЦ РАН, 2014. — 410 с. — С. 81 − 82.
  • Плёнкин А. П.Использование квантового ключа для защиты телекоммуникационной сети // Технические науки — от теории к практике. 2013. № 28. — С. 54-58.
  • Румянцев К. Е., Плёнкин А. П., Синхронизация системы квантового распределения ключа в режиме однофотонной регистрации импульсов для повышения защищенности. // Радиотехника. . — 2015. — № 2. — C. 125—134
  • Плёнкин А. П., Румянцев К. Е., Синхронизация системы квантового распределения ключа при использовании фотонных импульсов для повышения защищённости // Известия ЮФУ. Технические науки. — 2014. — № 8, — № 157. — С. 81-96.
  • Румянцев К. Е., Плёнкин А. П., Безопасность режима синхронизации системы квантового распределения ключей // Известия ЮФУ. Технические науки. — 2015. Т. № 5,- № 166. — С. 135—153.

 

Загадка древнеегипетской государственности

Семён Резниченко.

Загадка древнеегипетской государственности.

Древнеегипетская концепция божественной власти фараона имеет вполне африканскую специфику. Неизвестно, правда, появилась ли эта концепция в Африке Южнее Сахары или проникла туда из Египта или от сахарских европеоидов или из передней Азии? Трудно сказать.

«Начиная с 8-го — 7-го тыс. до н. э. через малопригодные для обитания заболоченные джунгли долины Нила мигрируют различные племена, являвшиеся носителями афразийских языков.

Согласно гипотезе А. Ю. Милитарева, — движение этих племён началось из Передней Азии в связи с опустыниванием Аравийского полуострова. Изменение климата заставило их перемещаться через Суэцкий перешеек в Северную Африку: в плодородную неолитическую Сахару.

Согласно другому предположению (сторонник И. М. Дьяконов), — эти племена спустились по Нилу в Древний Египет с юга, с территорий, соответствующих современной Эфиопии и другим областям Восточной Африки —альтернативному месту зарождения афразийских языков. Эта многовековая миграция представляла собой обитание с постепенным смещением в определённом направлении, но не исключала и «одномоментных» бросков (например, для преодоления водных преград). Когда афразийцы заселили Северо-Восточную Африку, чередование периодов аридизации и увлажнения Восточной Сахары влияло на приток и отток этих племён из Ливийской пустыни на берега Нила.

По некоторым расчётам, — 5—3,3 тысяч лет назад 30—35 % населения этой территории составляли представители негроидной расы, 30 % —средиземноморского типа европеоидной расы, а остальные имели кроманьонский тип или смешанный» — сообщает «Википедия» (1).

Представителями негроидной расы, скорее всего, были кушиты – коренные народы Африканского Рога. По одной из гипотез, Эфиопия – прародина всех семито-хамитских (афразийских) племен. Возможно, корни египетской цивилизации имеют негритяно-кушитскую природу (2).

Но харизматическая власть, сходная с африканскими аналогами, была сильна и на Крите, где также одними из первых насельников предполагают носителей афразийских языков. Древние контакты с афразийцами обнаруживаются и в северокавказских языках.

Создали ли египтяне первыми развитую бюрократическую государственность, столь характерную для Евразии и гораздо менее типичную для Америки и Африки, где бюрократический механизм во многом заменяла харизма правителя? Или бюрократическая система пришла из Передней Азии? Была привезена на колесницах гиксосов?

По крайней мере Древний Египет стал первым крупным территориальным государством, стержнем которого была обожествлённая власть фараона. А была ли бюрократия также сильна, как при III династии Ура в Месопотамии? Или это была сакральная власть африканско- критского типа? Источники позволяют давать разные толкования….

  1. Древний Египет // https://ru.wikipedia.org (дата обращения — 14. 03. 2018).
  2. Карасёв И.В. Кушитские письмена // http://www.rbardalzo.narod.ru (дата обращения – 14.03. 2018).

Чем объясняется плачевное состояние некоторых этносов

Плачевное состояние некоторых этносов объясняется тем, что в их рамках идентичность была привязана к определённому укладу жизни, социальная мобильность плохо сочеталась с идентичностью. При этом стать представителем более статусных этносов было не слишком трудно.

По поводу прародины индоевропейцев

По поводу прародины индоевропейцев.

Прародина достоверно не установлена, но достоверно установлен их весьма высокий уровень мобильности и технологий (наличие колёсного транспорта и пр.). И всё это при сравнительно легко проницаемом пространстве эпохи ранней и средней бронзы. Тогда территориальных государств, охраняющих свои границы было сравнительно мало. На территории Евразии было масса незаселённых или малозаселённых территорий, удобных для передвижения по ним, их присвоения. В условиях сталь высокой подвижности групп индоевропейцев может не иметь смысла. Больше значения имеет выявления территорий где а) которые не могут быть прародиной индоевропейцев б) которые вероятно могут быть прародиной индоевропейцев в) которые могут быть прародиной индоевропейцев со значительной долей вероятности.

Много могут дать также действительно масштабные исследования сохранившегося в погребениях генетического материала.